Inducing Relational Concepts with Neural Networks via the LINUS System

نویسندگان

  • Rodrigo Basilio
  • Gerson Zaverucha
  • Artur S. d'Avila Garcez
چکیده

This paper presents a method to induce relational concepts with neural networks using the inductive logic programming system LINUS. Some first-order inductive learning tasks taken from machine learning literature were applied successfully, thus confirming the quality of the hypothesis generated by neural networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network

Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...

متن کامل

Learning Aggregations and Selections with Relational Neural Networks

We make an assessment of the expressiveness of relational neural networks to learn different kinds of concepts over relational domains. More specifically, we are interested in the distinction between learning aggregation and selection. This distinction plays an important role with regard to current relational learners as most of them have difficulties to make non-trivial combinations of both. A...

متن کامل

Lifted Relational Neural Networks

We propose a method combining relational-logic representations with deep neural network learning. Domain-specific knowledge is described through relational rules which may be handcrafted or learned. The relational rule-set serves as a template for unfolding possibly deep neural networks whose structures also reflect the structure of given training or testing examples. Different networks corresp...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998